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ABSTRACT: Synthesis of the tetracyclic cores of madang-
amines D−F was achieved, featuring a reductive radical process
from an ethoxycarbonyldichloroacetamide to build the
morphan nucleus, a Mitsunobu-type aminocyclization toward
the common diazatricyclic intermediate, and ring-closing
metathesis reactions for the macrocyclization step leading to
the 13- to 15-membered rings.

Madangamines are a group of 3-alkylpiperidine marine
alkaloids embodying a pentacyclic skeleton.1 The six

madangamines isolated so far have in common a perhydro-6,4-
(iminomethano)isoquinoline core (ABC ring)2−4 and a western
macrocycle of 13 to 15 members. Madangamines A−E contain
an eastern polyunsaturated ring and madangamine F shows a
greater oxidation state in rings B and E (Figure 1). Their

biological activities, coupled with a highly complex structure,
have made these alkaloids attractive synthetic targets. However,
only one member of this family, madangamine D, has been
achieved by total synthesis, in recent work by Amat and Bosch.5

Four other approaches have been developed to access the
madangamine ABC diazatricyclic core using either hydro-
isoquinolines6 or 2-azabicyclo[3.3.1]nonanes (morphans) as
intermediate platforms.7,8

Herein, we report a synthetic approach to the tetracyclic cores
of madangamines D−F from a common precursor. As depicted
in Scheme 1, the synthetic strategy we pursued toward our goal,
macrocycles 1−3, leads back, via the dienes 4, to diazatricyclic
compound 5, which served as a strategic point of divergence en
route to these targeted compounds. Overall, ring-closing

metathesis (RCM)9 macrocyclizations of dienes 4 were required
in the range of 13- to 15-membered rings. The polyfunctional-
ized morphan10 6 was envisaged as an early stage intermediate
from which an allyl group would be selectively introduced at C9.
The nitrile at C5 and the ester at C9 stemming from themorphan
cyclization would undergo reduction for the synthesis of a useful
amino alcohol to promote the ring closure leading to 5. Morphan
6 would be accessed by the reductive radical cyclization of
alkoxycarbonyldichloroacetamide 7, thereby expanding the
scope of haloacetamides able to generate radical species for the
building of nitrogen-containing rings, either in reductive11 or
atom-transfer radical cyclizations.12 The usefulness of radical
synthetic methods for constructing valuable intermediates in
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Figure 1. Madangamines D−F embodying a macrocyclic saturated D-
membered ring.

Scheme 1. Retrosynthetic Strategy for Synthesis of the
Tetracyclic ABCD Rings of Madangamines
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target-oriented natural product synthesis would thus be
enhanced.13,14

The synthesis began with the 4-(benzylamino)cyclohex-1-
encarbonitrile (8), which was available in six steps from the
monoethylene acetal of 1,4-cyclohexanedione using a protocol
without any chromatographic purification.15 This secondary
amine was acylated with 2,2-dichloro-2-ethoxycarbonylacetyl
chloride,16 and the resulting dichloroamido ester 7 was treated
with Bu3SnH to induce a reductive radical cyclization17 leading to
the bridged morphan nucleus 6 in 77% yield (Scheme 2).

Notably, attempts to obtain 6 by an ionic intramolecular Michael
reaction from amido ester 9, also available from 8, gave poor
results, not only because of the overall yield but also, and even
more importantly, due to the low stereocontrol. The lack of
diastereoselectivity (6 was isolated as a 4:1 epimeric mixture at
C5, usingNaH as the base) seems inherent to the process, since it
is known that the equatorial protonation of exocyclic α-cyano
cyclohexyl anions can occur, leaving an axial cyano substituent.18

Some interesting results were observed in the radical
cyclization: (i) the formation of 6 was diastereoselective, the
stereochemistry at C5 and C9 in morphan 6 being well-defined,
since the cyano group at C5 was equatorially located by a kinetic
axial delivering of the hydrogen from theBu3SnH and the ester
group at C9 has an axial disposition (Figure 2), and (ii) a

normorphan compound 10 was also isolated as a minor
byproduct.19 The α-amidoyl radical derived from 7 presents
two reactive conformations, namely the Z rotamer INT3 and E
rotamer INT1, the latter being required for the cyclization step
(Figure 3). Although INT3 is 5.6 kcal/mol more stable than
INT1, 6 was formed from rotamer INT1 via transition state TS1
(ΔG⧧ = 10.9 kcal/mol, from INT3). In contrast, normorphan 10
arose from the most stable radical rotamer INT3, unable to

undergo radical cyclization, which underwent a 1,4-H radical
translocation20 in a more energetically demanding process (ΔG⧧

= 15.4 kcal/mol, via TS2) followed by a radical cyclization to the
normorphan nucleus (a complete profile of the process based on
density functional theory calculations is included in the
Supporting Information). Therefore, it can be concluded that
the favored formation of the morphan-cyclized compound takes
place mainly under kinetic control.21

The next step frommorphan 6, involving the generation of the
quaternary stereogenic center, was the chemoselective allylation
upon the methine at C9, which took place from the top face
under a sterically controlled kinetic reaction to give exclusively
1122 (Scheme 3). The configuration in the stereogenic
quaternary center in 11 was established unequivocally from a
NOESY NMR spectrum in which a methylene proton of the side
chain at δ 2.65 give a cross-peak with the H-11 (pro-S) at δ 2.20.
In the following step, the reduction of the carbonyl lactam, nitrile,
and ester groups was carried out in only one operation by
treatment of 11 with alane, generated in situ from LiAlH4 and
AlCl3. The process gave the diamino alcohol 12 in high yield. For
the ring closure of the piperidine A ring, a Fukuyama protocol
was used involving an initial nosylation and further intra-
molecular alkylation through a Mitsunobu process. Removal of
the nosyl group rendered the secondary amine 5, which
constitutes the common advanced synthetic intermediate en
route to the three diazatetracyclic targets.
Amide bond formation between secondary amine 5 and 10-

undecenoic acid chloride afforded the RCM precursor 4a in 83%
yield. The RCM of 4a was undertaken using Grubbs second-
generation catalyst in CH2Cl2 (3.3 mM) to give the cyclized
product 15a in 66% yield. Finally, adjustment of the oxidation
level by hydrogenation with a concomitantN-debenzylation gave
16a, which by reduction with LiAlH4 finally rendered the target
1. The overall yield for the synthesis of the tetracyclic ring of
madangamine F, 1, was 6.2% over 17 steps.
Having achieved the first target, we pursued synthetic access to

the 14- and 13-macrocyclic ring analogues following the same

Scheme 2. Radical vs Ionic Cyclization toward the Morphan
Ring

Figure 2. Fully optimized geometries (B3LYP/6-31+G(d) level) and
relative energies of morphans 6 and 6-epi (methyl esters).

Figure 3. Computed reaction profile (uB3LYP/6-31+G(d) level) for
the radical processes from amide rotamers: (a) radical cyclization via
TS1; (b) 1,4-hydrogen translocation via TS2. Relative free energies
(ΔG298, at 298 K) are given in kcal/mol.
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protocol, i.e., using the secondary amine 5 as a common
intermediate. Thus, treatment of 5 with 9-decenoic and 8-
nonenoic acid chlorides led to the amides 4b and 4c, respectively,
in good yields. RCM from 4b took place under the same reaction
conditions as used from 4a (Scheme 4). As expected, the

formation of the 13-membered ring was more difficult as a
consequence of the higher strain imposed by the double bond in
this particular macrocycle.23 Indeed, the cyclization did not
proceed when 4c in CH2Cl2 was used as a solvent, but when
toluene at 80 °C was used with 1,4-benzoquinone as an
additive,24 macrocycle 15c was isolated in 43% yield. Hydro-
genation of 15b and 15c allowed us to isolate the tetracyclic

compounds 16b and 16c, respectively, which after reduction of
the lactam moiety rendered 2 (37% over two steps) and 3 (53%
over two steps).
In summary, a 17-step approach for the construction of the

ABCD ring system of madangamines F, E, andDwas successfully
developed. We have shown that radical chemistry is a powerful
tool for the stereoselective synthesis of the highly functionalized
AB ring system. The synthetic pathway gave access to the three
different ABCD fragments of madangamines from a common
intermediate. This chemistry will pave the way for the total
synthesis of madangamines.
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Scheme 3. Synthesis of the Tetracyclic Core of Madangamine F

Scheme 4. Synthesis of Tetracyclic ABCD Rings of
Madangamines D and E
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